CETIFICATION

SDG No:

MC45611

Laboratory:

Accutest, Massachusetts

Site:

BMS, Building 5 Area, PR

Matrix:

Groundwater/Soil

Humacao, PR

SUMMARY:

Groundwater and soil samples (Table 1) were collected on the BMSMC facility – Building 5 Area. The BMSMC facility is located in Humacao, PR. Samples were taken April 28, 2016 and were analyzed in Accutest Laboratory of Marlborough, Massachusetts that reported the data under SDG No.: MC45611. Results were validated using the following quality control criteria of the methods employed (MADEP VPH and MAPED EPH, Massachusets Department of Environmental Protection, 2004) and the latest validation guidelines (July, 2015) of the EPA Hazardous Waste Support Section. The analyses performed are shown in Table 1. Individual data review worksheets are enclosed for each target analyte group. The data sample organic data samples summary form shows for analytes results that were qualified.

In summary the results are valid and can be used for decision taking purposes.

Table 1. Samples analyzed and analysis performed

SAMPLE ID	SAMPLE DESCRIPTION	MATRIX	ANALYSIS PERFORMED
MC45611-1	MW-20S(7-8)	Soil	Volatiles TPHC Ranges Extractable TPHC Ranges
MC45611-2	RA18-GWD	Groundwater	Volatiles TPHC Ranges
MC45611-2A	RA18-GWD	Groundwater	Extractable TPHC Ranges
MC45611-2MS	RA18-GWD	Groundwater	Volatiles TPHC Ranges
MC45611-2MSD	RA18-GWD	Groundwater	Volatiles TPHC Ranges
MC45611-2AMS	RA18-GWD	Groundwater	Extractable TPHC Ranges
MC45611-2AMSD	RA18-GWD	Groundwater	Extractable TPHC Ranges

Reviewer Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

May 22, 2016

Raw Data: AB93919.D

SGS Accutest

Report of Analysis

Page 1 of 1

Client Sample ID: MW-20S(7-8) Lab Sample ID: MC45611-1 Matrix:

SO - Soil

MADEP VPH REV 1.1

Date Sampled: 04/28/16 Date Received: 04/29/16

Percent Solids: 75.6

Method: Project:

BMSMC, Building 5 Area, Puerto Rico

Analytical Batch File ID DF Analyzed By Prep Batch Prep Date AB93919.D 05/02/16 AF GAB5160

Run #1 Run #2

Initial Weight Final Volume Methanol Aliquot 16.0 ml Run #1 16.2 g 100 ul

Run #2

Volatile TPHC Ranges

CAS No.	Compound	Result	RL	MDL	Units	Q
	C5- C8 Aliphatics (Unadj.) C9- C12 Aliphatics (Unadj.) C9- C10 Aromatics (Unadj.) C5- C8 Aliphatics C9- C12 Aliphatics	ND ND ND ND ND	8200 8200 8200 8200 8200	4100 4100 4100 4100 4100	ug/kg ug/kg ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# I	Run# 2	Lim	2 0	
	2,3,4-Trifluorotoluene 2,3,4-Trifluorotoluene	99% 101%			30% 30%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

SGS Accutest

Report of Analysis

By

TA

Page 1 of 1

Client Sample ID: Lab Sample ID:

MW-20S(7-8) MC45611-1

Date Sampled:

04/28/16

Matrix:

SO - Soil

Date Received: 04/29/16

Method:

MADEP EPH REV 1.1 SW846 3546

Percent Solids: 75.6

Project:

BMSMC, Building 5 Area, Puerto Rico

Analytical Batch

Run #1 Run #2 File ID DE14092.D Analyzed 05/16/16

Prep Date 05/10/16

Prep Batch OP47424

GDE791

Initial Weight

Final Volume

11.0 g

2.0 ml

DF

1

Run #1 Run #2

Extractable TPHC Ranges

CAS No.	Compound	Result	RL	MDL	Units	Q
	C11-C22 Aromatics (Unadj.) C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics	ND ND ND ND	24000 12000 12000 24000	19000 9600 9600 19000	ug/kg ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
84-15-1	o-Terphenyl	82%		40-1	40%	
321-60-8	2-Fluorobiphenyl	84%		40-1	40%	
580-13-2	2-Bromonaphthalene	86%		40-1	40%	
3386-33-2	1-Chlorooctadecane	65%		40-1	40%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

SGS Accutest

Report of Analysis

By

AF

Page 1 of 1

Client Sample ID: Lab Sample ID:

RA18-GWD MC45611-2

AQ - Ground Water

Matrix: Method:

MADEP VPH REV 1.1

DF

Date Sampled: 04/28/16 Date Received: 04/29/16

n/a

Percent Solids: n/a

Prep Date

n/a

Project:

BMSMC, Building 5 Area, Puerto Rico

Analyzed

04/29/16

Prep Batch

Analytical Batch GAB5159

Run #1 Run #2

Purge Volume

Run #1 Run #2 5.0 ml

File ID

AB93911.D

Volatile TPHC Ranges

CAS No.	Compound	Result	RL	MDL	Units	Q
	C5- C8 Aliphatics (Unadj.)	ND	50	40	ug/l	
	C9- C12 Aliphatics (Unadj.)	ND	50	40	ug/l	
	C9- C10 Aromatics (Unadj.)	ND	50	40	ug/l	
	C5- C8 Aliphatics	ND	50	40	ug/l	
	C9- C12 Aliphatics	ND	50	40	ug/l	
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	its	
	2,3,4-Trifluorotoluene	84%		70-1	30%	
	2,3,4-Trifluorotoluene	88%		70-1	30%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

SGS Accutest

Report of Analysis

By

TA

Page 1 of 1

Client Sample ID: Lab Sample ID:

RA18-GWD MC45611-2A

AQ - Ground Water

Date Sampled: 04/28/16

Matrix:

DF

1

Date Received: 04/29/16

Method:

MADEP EPH REV 1.1 SW846 3510C

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, Puerto Rico

Run #1

File ID DE14008.D Analyzed 05/02/16

Prep Date 04/29/16

Prep Batch OP47292

Analytical Batch GDE783

Run #2

Initial Volume

Final Volume

880 ml

2.0 ml

Run #1 Run #2

Extractable TPHC Ranges

CAS No.	Compound	Result	RL	MDL	Units	Q
	C11-C22 Aromatics (Unadj.) C9-C18 Aliphatics C19-C36 Aliphatics C11-C22 Aromatics	ND ND ND ND	110 110 110 110	80 80 80 80	ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
84-15-1 321-60-8 3386-33-2 580-13-2	o-Terphenyl 2-Fluorobiphenyl 1-Chlorooctadecane 2-Bromonaphthalene	82% 94% 62% 96%		40-1 40-1	40% 40% 40% 40%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 1

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: MC45611

Account: AMANYWP Anderson Mulholland and Assoc.

Project: BMSMC, Building 5 Area, Puerto Rico

Sample MC45611-2MS MC45611-2MSD	File ID AB93912.D AB93913.D	DF 1	Analyzed 04/29/16 04/29/16	By AF AF	Prep Date n/a n/a	Prep Batch n/a n/a	Analytical Batch GAB5159 GAB5159
MC45611-2	AB93911.D	ī	04/29/16	AF	n/a	n/a	GAB5159

The QC reported here applies to the following samples:

Method: MADEP VPH REV 1.1

MC45611-2

CAS No.	Compound	MC45611-2 ug/l Q	Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
	C5- C8 Aliphatics (Unadj.) C9- C12 Aliphatics (Unadj.) C9- C10 Aromatics (Unadj.)	ND ND ND	350 400 150	318 443 158	91 110 105	350 400 150	319 448 161	91 112 107	0 1 2	70-130/25 70-130/25 70-130/25
CAS No.	Surrogate Recoveries	MS	MSD	М	C45611-2	Limits				
	2,3,4-Trifluorotoluene 2,3,4-Trifluorotoluene	92% 94%	94% 95%	849 889	_	70-1309 70-1309	-			

^{* =} Outside of Control Limits

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: MC45611

Account: AMANYWP Anderson Mulholland and Assoc.

Project: BMSMC, Building 5 Area, Puerto Rico

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP47292-MS	DE14009.D	1	05/02/16	TA	04/29/16	OP47292	GDE783
OP47292-MSD	DE14010.D	1	05/02/16	TA	04/29/16	OP47292	GDE783
MC45611-2A	DE14008.D	1	05/02/16	TA	04/29/16	OP47292	GDE783

The QC reported here applies to the following samples:

Method: MADEP EPH REV 1.1

Page 1 of 1

MC45611-2A

CAS No.	Compound	MC45611-2 ug/l Q	ASpike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rcc/RPD	
	C11-C22 Aromatics (Unadj.) C9-C18 Aliphatics C19-C36 Aliphatics	ND ND ND	909 341 455	934 218 466	103 64 103	909 341 455	849 215 439	93 63 97	10 1 6	40-140/25 40-140/25 40-140/25	
CAS No.	Surrogate Recoveries	MS	MSD	М	:45611-2	2ALimits					
84-15-1	o-Terphenyl	83%	75%	829	6	40-1409	%				
321-60-8	2-Fluorobiphenyl	96%	87%	949	6	40-1409	%				
3386-33-2	1-Chlorooctadecane	65%	60%	629	6	40-1409	%				
580-13-2	2-Bromonauhthalene	83%	77%	969	К	40-1409	%				

^{* =} Outside of Control Limits

,	CHAIN OF CUSTODY SGS Accusted of New England TEST ~ NE 50 ("Angelo Drive, Building Dee Meritaneough, MA 51732" TEL 500-481-4300 671-7733 WHYE SOCIETY SOCIETY STATES WHYE SOCIETY SOCIETY STATES STATES S					PAGE 1 OF 1 MCYS 611 GET From NJ
Anderson Muhalandhamin 2700 Westchester Purchase Ny Terry Taylor 911-251-0100 N. Rivera, T. Taylor, D. Lindston	Cay HUMA C & B	State Sept.	SCSS MENT of the second of the	žφ	4 VPH 9 E P H R	Materia Code ON - Dimining W ON - Circust W WW - Well BY - Sul - Sul SL - Sulig SED - Sedomn CI - Our Int ARI - Ari SCI, - Coner Int Fig Well Fig Sulig Fi
Field 10 / Point of Collection - 7 MW-20 S (7-8) (RAIS-GWD - RAIS-GWD (MS) - RAIS-GWD (MSD)	4 [28] [4 4 [28] [4 4 [28] [6 4 [28] [6 4 [28] [6	1300 TT (SO S S S S S S S S S S S S S S S S S S	2 8	W 9	16B 16B 1612 2K2 2C
Turnerbund Time Bustesen dryn) Bid. 18 Bustesen Days 6	Approved by (BCE Amadeed Prog.) Extra Section 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	H	nmarcini "B" (Levol 2) [LLT1 (Levol 2+4) [RCP [OC Summery posemesion, includ	INITIAL ASESSMEN LATEL VERIFICATION Output Time: Output Time: Display Preserved where applicables	

MC45611: Chain of Custody
Page 1 of 2

EXECUTIVE NARRATIVE

SDG No:

MC45611

Laboratory:

Accutest, Massachusetts

Analysis:

MADEP VPH

Number of Samples:

Location:

BMSMC, Building 5 Area

Humacao, PR

SUMMARY:

Four (4) samples were analyzed for Volatiles TPHC Ranges by method MADEP VPH. Samples were validated following the METHOD FOR THE DETERMINATION OF VOLATILE PETROLEUM HYDROCARBONS (VPH) quality control criteria, Massachusetts Department of Environmental Protection, Revision 1.1 (2004). Also the general validation guidelines promulgated by the USEPA Hazardous Wastes Support Section. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

Critical issues:

None

Major:

None

Minor:

None

Critical findings:

None

Major findings:

None

Minor findings:

- 1. % differences in the rt5.5-7 hydrocarbon range did not meet the method and guidance document performance criteria in the initial calibration verification. No action taken, professional judgment.
- 2. No MS/MSD associated with soil matrix included in the data package. Blank spike/blank spike duplicate used to assess accuracy. BS/BSD % recoveries and RPD within laboratory control limits.

COMMENTS:

Results are valid and can be used for decision making purposes.

Reviewers Name:

Rafael Infante

Chemist License 1888

Signature:

May 22, 2016

Date:

SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: MC45611-1

Sample location: BMSMC Building 5 Area

Sampling date: 4/28/2016 Matrix: Soil

METHOD: MADEP VPH

Ç9 - C12 Aliphatics	Ç5 - C8 Aliphatics	Ç9 - C10 Aromatics (Unadj.)	Ç9 - C12 Aliphatics (Unadj.)	Ç5 - C8 Aliphatics (Unadj.)	Analyte Name
8200	8200	8200	8200	8200	Result
ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	Units Dilution I
1	<u> </u>	₽ ≥	H	-	on Factor
	•		•	•	Factor Lab Flag
C	_	_	_	C	Validation
Yes	Yes	Yes	Yes	Yes	Reportable

Sample ID: MC45611-2

Sample location: BMSMC Building 5 Area Sampling date: 4/28/2016

Matrix: Groundwater

METHOD: MADEP VPH

Ç9 - C12 Aliphatics	Ç5 - C8 Aliphatics	Ç9 - C10 Aromatics (Unadj.)	Ç9 - C12 Aliphatics (Unadj.)	Ç5 - C8 Aliphatics (Unadj.)	Analyte Name
50	50	50	50	50	Result
ug/l 1	ug/i 1	ug/i 1	ug/i 1	ug/l 1	Units Dilution Factor Lab Flag V
	1	1	c	•	r Lab Flag
C	C	C	C	_	Validation
Yes	Yes	Yes	Yes	Yes	Reportable

Sample ID: MC45611-2MS

Sample location: BMSMC Building 5 Area

Sampling date: 4/28/2016 Matrix: Groundwater

METHOD: MADEP VPH

Ç9 - C10 Aromatics (Unadj.)	Ç9 - C12 Aliphatics (Unadj.)	Ç5 - C8 Aliphatics (Unadj.)	Analyte Name
158	443	318	Result
ug/l	l/gu	l/gu	Units Di
М		ц	Units Dilution Factor Lab Flag Validation Reportable
	•		Lab Flag
f	•		Validation
Yes	Yes	Yes	Reportable

Sample ID: MC45611-2MSD

Sample location: BMSMC Building 5 Area Sampling date: 4/28/2016

Matrix: Groundwater

METHOD: MADEP VPH

Ç9 - C10 Aromatics (Unadj.)	Ç9 - C12 Aliphatics (Unadj.)	Ç5 - C8 Aliphatics (Unadj.)	Analyte Name
161	448	319	Result
l/gu	l/gu	l/gu	Units D
Þ	ь	Ь	Units Dilution Factor
ï	1	ı	r Lab Flag
ř			Validation
Yes	Yes	Yes	Reportable

Type of validation	Full:X Limited:	Project Number:_N Date: Shipping date: EPA Region:	04/28/2016 04/28/2016
REVIEW OF V	/OLATILE PETROLEI	JM HYDROCARBON	(VPHs) PACKAGE
validation actions. This more informed decision were assessed accomprecedence METHO HYDROCARBONS (V (2004). Also the gene Support Section. The	s document will assist the contain better serving ding to the data validated by FOR THE DET (PH), Massachusetts Deteral validation guidelines	e reviewer in using pro the needs of the data ion guidance documer ERMINATION OF partment of Environme is promulgated by the dation actions listed on	eated to delineate required of siconal judgment to make a users. The sample results into the following order of VOLATILE PETROLEUM intal Protection, Revision 1.1 USEPA Hazardous Wastes the data review worksheets
The hardcopied (laboreceived has been rev review for SVOCs included)	riewed and the quality co	est_Laboratories entrol and performance	data package data summarized. The data
No. of Samples: Field blank No.: Equipment blank No.: Trip blank No.:	MC45611	·	rix:Groundwater/Soil
X Data CompletingX Holding TimeN/A GC/MS TuningN/A Internal StandX BlanksX Surrogate ReX Matrix Spike	es ng dard Performance	X Laboratory (X Field Duplice X Calibrations X Compound (X Quantitation	Quantitation
Overall Comn (C5_to_C12_Aliphatics	nents: _Volatile s;_C9_to_C10_Aromatic		MADEP_VPH,_REV_1.1
Definition of Qualifiers:	:		
J- Estimated rest U- Compound not R- Rejected data UJ- Estimated not Reviewer: 6	t detected		_

	Criteria were not	All criteria were metx met and/or see below
I. DATA COMPLETNE A. Data Packag	SSS e:	56
MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
B. Other		Discrepancies:
200		
	30 10 00 00 00 00 00 00 00 00 00 00 00 00	

All criteria were met	_X
Criteria were not met and/or see below	

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of extraction, and subsequently from the time of extraction to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE	DATE	DATE	ACTION
	SAMPLED	EXTRACTED	ANALYZED	
				· · · · · · · · · · · · · · · · · · ·
l	amples analyzed	within method re	L L Commended holdin	a time
	,			

Criteria

Preservation:

Samples analyzed with ambient purge temperature: Samples must be acidified to a pH of 2.0 or less at the time of collection.

Samples analyzed with heated purge temperature: Samples must be treated to a pH of 11.0 or greater at the time of collection.

Methanol preservation of soil/sediment samples is mandatory. Methanol (purgeand-trap grade) must be added to the sample vial before or immediately after sample collection. In lieu of the in-field preservation of samples with methanol, soil samples may be obtained in specially-designed air tight sampling devices, provided that the samples are extruded and preserved in methanol within 48 hours of collection.

Holding times:

Aqueous samples using ambient or heated purge - analyze within 14 days. Soil/sediment samples - analysis within 28 days.

Cooler temperature (Criteria: 4 <u>+</u> 2 °C):1.2°C	
--	--

Actions: Qualify positive results/nondetects as follows:

If holding times are exceeded, estimate positive results (J) and nondetects (UJ). If holding times are grossly exceeded, use professional judgment to qualify data. The data reviewer may choose to estimate positive results (J) and rejects nondetects (R). If samples were not at the proper temperature (> 10°C) or improperly preserved, use professional judgment to qualify the results.

	All criteria were metX
	Criteria were not met and/or see below
CALIBRATIONS VERIFICATION	
Compliance requirements for satis ensure that the instrument is ca quantitative data.	factory instrument calibration are established to pable of producing and maintaining acceptable
	Date of initial calibration:01/12/16
	Dates of initial calibration verification:01/12/16_
	Instrument ID numbers:GCAB
	Matrix/Level: AQUEOUS/MEDIUM

DATE	LAB FILE ID#	ANALYTE	CRITERIA OUT RFs, %RSD, %D , r	SAMPLES AFFECTED
GCAB				
01/12/16	icv5058-50	rt5.5-7	22.6	MC45611-1 to -3
	<u> </u>			

Note: Initial and initial calibration verification meet method specific requirements except in the case described above. No action taken, professional judgment.

Criteria- ICAL

- Five point calibration curve.
- The percent relative standard deviation (%RSD) of the calibration factor must be
 equal to or less than 25% over the working range for the analyte of interest.
 When this condition is met, linearity through the origin may be assumed, and the
 average calibration factor is used in lieu of a calibration curve.
- A collective calibration factor must also be established for each hydrocarbon range of interest. Calculate the collective CFs for C5-C8 Aliphatic Hydrocarbons and C9-C12 Aliphatic Hydrocarbons using the FID chromatogram. Calculate the collective CF for the C9-C10 Aromatic Hydrocarbons using the PID chromatogram. Tabulate the summation of the peak areas of all components in that fraction against the total concentration injected. The %RSD of the calibration factor must be equal to or less than 25% over the working range for the hydrocarbon range of interest.

Criteria- CCAL

- At a minimum, the working calibration factor must be verified on each working day, after every 20 samples, and at the end of the analytical sequence by the injection of a mid-level continuing calibration standard to verify instrument performance and linearity.
- If the percent difference (%D) for any analyte varies from the predicted response by more than ±25%, a new five-point calibration must be performed for that analyte. Greater percent differences are permissible for n-nonane. If the %D for n-nonane is greater than 30, note the nonconformance in the case narrative. It should be noted that the %Ds are calculated when CFs are used for the initial calibration and percent drifts are calculated when calibration curves using linear regression are used for the initial calibration.

Actions:

If %RSD > 25% for target compounds or a correlation coefficient < 0.99, estimate positive results (J) and use professional judgment to qualify nondetects.

If % D > 25% (> 30 for nonane), estimate positive results (J) and nondetects (UJ).

CALIBRATIONS VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibratio	n:01/12/16_	
Dates of continuing cal	ibration verification:_	_04/29/16;_05/02/16_
Dates of final calibration	n verification:	_04/29/16;_05/02/16_
Instrument ID numbers	:GCAB	
Matrix/Level:A	QUEOUS/MEDIUM_	

DATE	LAB FILE ID#	ANALYTE	CRITERIA OUT RFs, %RSD, %D , r	SAMPLES AFFECTED
	<u> </u>			

Note: Continuing and final calibration verification meet method and guidance document specific requirements.

A separate worksheet should be filled for each initial curve

			Criteria were not	All criteria were metX_ met and/or see below
VA. BLANK	K ANALYSIS R	ESULTS (Se	ctions 1 & 2)	
magnitude of oblanks associate problems with evaluated to concase, or if the	contamination ated with the same any blanks eletermine whe problem is aramust be run	problems. The samples, included in the samples, included in the sample after sample after sample in the sample in the sample after sample in the sample in t	ne criteria for eva uding trip, equipn a associated with ere is an inheren currence not affects as suspected of	determine the existence and duation of blanks apply only to nent, and laboratory blanks. If the case must be carefully at variability in the data for the cting other data. A Laboratory being highly contaminated to
List the containseparately.	mination in the	e blanks belo	w. High and low	levels blanks must be treated
Laboratory bia	nks			
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
METHOD B		<u>.</u>		RITERIA
Field/Trip/Equi	pment			
A methanol trip each soil/sedi storage, and a	iment sample	ified reagent or water s	water trip blank s ample batch, re	should continually accompany espectively, during sampling,
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
_PACKAGE				_WITH_THIS_DATA

All criteria were met	_X
Criteria were not met and/or see below	

V B. BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. Peaks must not be detected above the Reporting Limit within the retention time window of any analyte of interest. The hydrocarbon ranges must not be detected at a concentration greater than 10% of the most stringent MCP cleanup standard. Specific actions area as follows:

If the concentration is < sample quantitation limit (SQL) and < AL, report the compound as not detected (U) at the SQL.

If the concentration is \geq SQL but < AL, report the compound as not detected (U) at the reported concentration.

If the concentration is > AL, report the concentration unqualified.

SAMPLE ID

All criteria were met _	_X
Criteria were not met and/or see below	

ACTION

SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment. List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery.

List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery. Matrix: solid/aqueous

SURROGATE COMPOUND

2,3,4-Trifluorotoluene					
_SURROGATE_STAI	NDARD_REG	COVERIE	S_WITHIN_LA	BORATORY_CONTRO)L
_LIMITS		<u> </u>			
		· · · · · · · · · · · · · · · · · · ·			
OC 1 imitat (A	<u> </u>				· · · •
QC Limits* (Aqueous)		_130	to	to	
QC Limits* (Solid)	70to_	_130	to	to	

It is recommended that surrogate standard recoveries be monitored and documented on a continuing basis. At a minimum, when surrogate recovery from a sample, blank, or QC sample is less than 70% or more than 130%, check calculations to locate possible errors, check the fortifying standard solution for degradation, and check changes in instrument performance.

If the cause cannot be determined, reanalyze the sample unless one of the following exceptions applies:

- (1) Obvious interference is present on the chromatogram (e.g., unresolved complex mixture);
- (2) Percent moisture of associated soil/sediment sample is >25% and surrogate recovery is >10%; or
- (3) The surrogate exhibits high recovery and associated target analytes or hydrocarbon ranges are not detected in sample.

If a sample with a surrogate recovery outside of the acceptable range is not reanalyzed based on any of these aforementioned exceptions, this information must be noted on the data report form and discussed in the Executive Report. Analysis of the sample on dilution may diminish matrix-related surrogate recovery problems. This approach can be used as long as the reporting limits to evaluate applicable MCP standards can still be achieved with the dilution. If not, reanalysis without dilution must be performed.

All criteria were met _	_X
Criteria were not met and/or see below	

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples.

At the request of the data user, and in consideration of sample matrices and data quality objectives, matrix spikes and matrix duplicates may be analyzed with every batch of 20 samples or less per matrix.

- Matrix duplicate Matrix duplicates are prepared by analyzing one sample in duplicate. The purpose of the matrix duplicates is to determine the homogeneity of the sample matrix as well as analytical precision. The RPD of detected results in the matrix duplicate samples must not exceed 50 when the results are greater than 5x the reporting limit.
- The desired spiking level is 50% of the highest calibration standard. However, the total concentration in the MS (including the MS and native concentration in the unspiked sample) should not exceed 75% of the highest calibration standard in order for a proper evaluation to be performed. The purpose of the matrix spike is to determine whether the sample matrix contributes bias to the analytical results. The corrected concentrations of each analyte within the matrix spiking solution must be within 70 130% of the true value. Lower recoveries of n-nonane are permissible (if included in the calibration of the C9-C12 aliphatic range), but must be noted in the narrative if <30%.</p>

MS/MSD Reco	veries and Precision C	riteria			
Sample ID:	MC45611-2		Matrix	/Level:_Ground	water/low
List the %Rs, R	PD of the compounds	which do no	t meet t	he QC criteria.	
MS OR MSD	COMPOUND	% R	RPD	QC LIMITS	ACTION
	1	(4)			
8					

Note: MS/MSD % recoveries and RPD within laboratory control limits. No MS/MSD associated with soil matrix included in the data package. Blank spike/blank spike duplicate used to assess accuracy. BS/BSD % recoveries and RPD within laboratory control limits.

All criteria were metX	<u>. </u>
Criteria were not met and/or see below	

No action is taken on MS/MSD results alone to qualify the entire case. However, used informed professional judgment, the data reviewer may use the MS/MSD results in conjunction with other QC criteria and determine the need for some qualification of the data. In those instances where it can be determined that the results of the MS/MSD affect only the sample spiked, the qualification should be limited to this sample alone. However, it may be determined through the MS/MSD results that the laboratory is having a systematic problem in the analysis of one or more analytes, which affects the associated samples.

2. MS/MSD – Unspiked Compounds

List the concentrations of the unspiked compounds and determine the % RSDs of these compounds in the unspiked sample, matrix spike, and matrix spike duplicate.

	CONCENTR				
COMPOUND	SAMPLE	MS	MSD	%RPD	ACTION
2 2 4 1 5 CO				92	
		and the same of th			

Criteria: None specified, use %RSD < 50 as professional judgment.

Actions:

If the % RSD > 50, qualify the results in the spiked sample as estimate (J). If the % RSD is not calculable (NC) due to nondetect value in the sample, MS, and/or MSD, use professional judgment to qualify sample data.

A separate worksheet should be used for each MS/MSD pair.

					criteria were met	
			Crite	ria were not met	and/or see below	v
	VIII.	LABORATORY C	ONTROL SAMI	PLE (LCS/LCSD) ANALYSIS	
matric		data is generated to	determine accu	uracy of the anal	ytical method for	various
	1.	LCS Recoveries	Criteria			
		List the %R of cor	mpounds which	do not meet the	criteria	
LCS II	D	COMPOUND	% R	QC LIMIT	ACTION	
_LC	S_REC	OVERY_WITHIN_L	ABORATORY_	CONTROL_LIM	TS	

Criteria:

- Refer to QAPP for specific criteria.
- * The spike recovery must be between 70% and 130%. Lower recoveries of n-nonane are permissible (if included in the calibration of the C9-C12 aliphatic range). If the recovery of n-nonane is <30%, note the nonconformance in the executive narrative.

Actions:

Actions on LCS recovery should be based on both the number of compounds that are outside the %R criteria and the magnitude of the excedance of the criteria.

If the %R of the analyte is > UL, qualify all positive results (j) for the affected analyte in the associated samples and accept nondetects.

If the %R of the analyte is < LL, qualify all positive results (j) and reject (R) nondetects for the affected analyte in the associated samples.

If more than half the compounds in the LCS are not within the required recovery criteria, qualify all positive results as (J) and reject nondetects (R) for all target analyte(s) in the associated samples.

2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix (1 per 20 samples per matrix)? Yes or No.

If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected. Discuss the actions below:

		Crite	All criteri eria were not met an		netN/A below
IX. FIELD/LAE	BORATOR	Y DUPLICATE PR	ECISION		
Sample IDs:		<u> </u>		Matrix:	
Field/laboratory duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which measures only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.					
COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION
No field/laboratory duplicate analyzed with this data package. MS/MSD and LCS/LCSD recoveries RPD used to assess precision. RPD within laboratory and generally acceptable control limits.					
_					
Criteria:					

The project QAPP should be reviewed for project-specific information. RPD \pm 30% for aqueous samples, RPD \pm 50 % for solid samples if results are \geq SQL. If both samples and duplicate are \leq SQL, the RPD criteria is doubled.

SQL = soil quantitation limit

Actions:

If both the sample and the duplicate results are nondetects (ND), the RPD is not calculable (NC). No action is needed.

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria.

If one sample result is not detected and the other is $\geq 5x$ the SQL qualify (J/UJ).

Note: If SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is < 5x the SQL, use professional judgment to determine if qualification is appropriate.

All criteria were met _	_X
Criteria were not met and/or see below	

XI. COMPOUND IDENTIFICATION

The compound identification evaluation is to verify that the laboratory correctly identified target analytes as well as tentatively identified compounds (TICs).

- 1. Verify that the target analytes were within the retention time windows.
 - Retention time windows must be re-established for each Target VPH
 Analyte each time a new GC column is installed, and must be verified and/or adjusted on a daily basis.
 - o Coelution of the m- and p- xylene isomers is permissible.
 - All surrogates must be adequately resolved from individual Target Analytes included in the VPH Component Standard.
 - For the purposes of this method, adequate resolution is assumed to be achieved if the height of the valley between two peaks is less than 25% of the average height of the two peaks.
 - The n-pentane (C5) and MTBE peaks must be adequately resolved from any solvent front that may be present on the FID and PID chromatograms, respectively.

Note: Target analytes were within the retention time window.

2. If target analytes and/or TICs were not correctly identified, request that the laboratory resubmit the corrected data.

		Criteria were not	All criteria were metX met and/or see below			
XII.	QUANTITATION LIMITS AND SAMPLE RESULTS					
The s	ample quantitation eval	uation is to verify laboratory qu	antitation results.			
1.	in the space below, pl	ease show a minimum of one	sample calculation:			
MC45	611-2MS	VPH (C7 – C10 Aliphatics)	$RF = 4.015 \times 10^{5}$			
FID						
[]=(7	79434860)/(4.015 x 10 ⁵))				
[]=1	97.8 ppb Ok					
MC45	611-1MS	VPH (C9 – C10 Aromatics)	$RF = 9.580 \times 10^5$			
PID						
[]=(1	50951128)/(9.580 x 10	5)				
[]=1	57.6 ppb Ok					
2. limit (f	If requested, verify th MDLs).	at the results were above the	laboratory method detection			
3.		, were the SQLs elevated ac les and dilution factor in the tal				
	SAMPLE ID	DILUTION FACTOR	REASON FOR DILUTION			
-						
			7 N N N N N N N N N N N N N N N N N N N			
		ed and the results were abovected compounds. List the affe				

EXECUTIVE NARRATIVE

SDG No:

MC45611

Laboratory:

Accutest, Massachusetts

Analysis:

MADEP EPH

Number of Samples:

Location:

BMSMC, Building 5 Area

Humacao, PR

SUMMARY:

Four (4) samples were analyzed for Extractable TPHC Ranges by method MADEP EPH. Samples were validated following the METHOD FOR THE DETERMINATION OF EXTRACTABLE PETROLEUM HYDROCARBONS (EPH) quality control criteria, Massachusetts Department of Environmental Protection, Revision 1.1 (2004). Also the general validation guidelines promulgated by the USEPA Hazardous Wastes Support Section. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

Critical issues:

None

Major:

None

Minor:

None

Critical findings:

None

Major findings:

None

Minor findings:

1. No MS/MSD samples analyzed for soil matrix. No action taken, blank spike/blank

spike duplicate used to assess accuracy. BS/BSD % recoveries within laboratory and

guidance document control limits.

COMMENTS:

Results are valid and can be used for decision making purposes.

Reviewers Name:

Rafael Infante

Chemist License 1888

Signature:

Kafail anfant

Date:

SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: MC45611-1

Sample location: BMSMC Building 5 Area

Sampling date: 4/28/2016

Matrix: Soil

METHOD: MADEP EPH

Ç11 - C22 Aromatics 24000	Ç19 - C36 Aliphatics 120	Ç9 - C18 Aliphatics 12000	Ç11 - C22 Aromatics (Unadj.) 24000	Analyte Name Result
ug/kg 1	ug/kg 1	ug/kg 1	ug/kg 1	Units Dilution Factor Lab Flag Validation Reportable
1	•	•	•	Lab Flag
C	C	C	C	Validation
Yes	Yes	Yes	Yes	Reportable

Sample ID: MC45611-2A

Sample location: BMSMC Building 5 Area

Sampling date: 4/28/2016

Matrix: Groundwater

METHOD: MADEP EPH

110	Ç11 - C22 Aromatics	Ç19 - C36 Aliphatics	Ç9 - C18 Aliphatics	Ç11 - C22 Aromatics (Unadj.)	Analyte Name
ug/l 1 - U Yes	110	110	110	110	Result
1 - U Yes	l/gu	l/gu	l/gu	l/gu	Units
Lab Flag Validation Reportable - U Yes - U Yes - U Yes	Ľ	⊬	1	–	Dilution Factor
Validation Reportable U Yes U Yes U Yes U Yes	×	.1	•	•	Lab Flag
Yes Yes Yes Yes Yes	–	_	C	_	Validation
	Yes	Yes	Yes	Yes	Reportable

Sample ID: MC45611-2AMS

Sample location: BMSMC Building 5 Area

Sampling date: 4/28/2016

Matrix: Groundwater

METHOD: MADEP EPH

Ç19 - C36 Aliphatics 466	Ç9 - C18 Aliphatics 218	Ç11 - C22 Aromatics (Unadj.) 934	Analyte Name Result
l/gu	l/gu	l/gu	Units
1	L	⊣	Units Dilution Factor Lab Flag Validation
•	•	•	Lab Flag
C	C	_	Validation
Yes	Yes	Yes	Reportable

Sample ID: MC45611-2AMSD

Sample location: BMSMC Building 5 Area Sampling date: 4/28/2016

Matrix: Groundwater

METHOD: MADEP EPH

Ç19 - C36 Aliphatics	Ç9 - C18 Aliphatics	Ç11 - C22 Aromatics (Unadj.)	Analyte Name
439	215	849	Result
l/gu	ug/l	ug/i	Units Dil
H	-	Ь	Units Dilution Factor
Ľ.		ı	Lab Flag
C	C	C	Validation
Yes	Yes	Yes	Reportable

Type of validation	Full:X Limited:	Date:	r:_MC45611 04/28/2016 _04/28/2016 2
REVIEW OF EXT	RACTABLE PETROLI	EUM HYDROCA	RBON (EPHs) PACKAGE
validation actions. This more informed decisio were assessed accord precedence METHOD HYDROCARBONS (VF (2004). Also the general Support Section. The Common section is a section of the se	document will assist the nand in better serving ling to the data validation FOR THE DETER! PH), Massachusetts Depral validation guidelines	e reviewer in using the needs of the on guidance docu MINATION OF I artment of Enviror promulgated by the lation actions listed	created to delineate required professional judgment to make data users. The sample results ments in the following order of EXTRACTABLE PETROLEUM nmental Protection, Revision 1.1 the USEPA Hazardous Wastes d on the data review worksheets
The hardcopied (labo received has been revi review for SVOCs inclu	ewed and the quality coi	st_Laboratories ntrol and performa	data package nce data summarized. The data
No. of Samples: Field blank No.: Equipment blank No.: Trip blank No.:	4		c: _Groundwater/Soil
X Data Complet X Holding Time N/A GC/MS Tunin N/A Internal Stand X Blanks X Surrogate Re X Matrix Spike/l	s g lard Performance coveries	X Laborato X Field Du X Calibrati X Compou X Compou X Quantita	ory Control Spikes plicates ons nd Identifications nd Quantitation tion Limits
Overall _Extractable_Petroleun (C9_to_C36_Aliphatics	n_Hydrocarbons_by_GC ;_C11_to_C22_(Aromatic	_by_Method_MAE	Comments: DEP_EPH,_REV_1.1
Definition of Qualifiers:			
J- Estimated resu U- Compound not R- Rejected data UJ- Estimated cond	detected	<i>H</i>	
Date:_05/22/2016			

	Criteria were not r	All criteria were metx net and/or see below
I. DATA COMPLETNE A. Data Packag		
MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
B. Other		Discrepancies:
•		

All criteria were met>	
Criteria were not met and/or see below	

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of extraction, and subsequently from the time of extraction to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

DATE	DATE	DATE	ACTION
SAMPLED	EXTRACTED	ANALYZED	
extracted and ar	nalyzed within me	thod recommende	ed holding time
		-	
	SAMPLED	SAMPLED EXTRACTED	T

Criteria

Preservation:

Aqueous samples must be acidified to a pH of 2.0 or less at the time of collection.

Soil samples must be cooled at 4 + 2 °C immediately after collection.

Holding times:

Samples must be extracted within 14 days of collection, and analyzed within 40 days of extraction.

Cooler temperature	e (Criteria: 4 <u>+</u> 2 ºC): ₋	1.2°C	

Actions: Qualify positive results/nondetects as follows:

If holding times are exceeded, estimate positive results (J) and nondetects (UJ). If holding times are grossly exceeded, use professional judgment to qualify data. The data reviewer may choose to estimate positive results (J) and rejects nondetects (R). If samples were not at the proper temperature (> 10°C) or improperly preserved, use professional judgment to qualify the results.

		Crite	All criteria eria were not met and/o	a were metX or see below
CALIBRAT	IONS VERIFIC	ATION		
Complianc ensure the quantitative	at the instrum	s for satisfactory in ment is capable of	nstrument calibration producing and mai	are established to ntaining acceptable
Dat	e of initial calib	ration:02/04	/16	
Dat	es of initial cali	bration verification:_	02/04/13	
inst	trument ID num	bers:GCD	E	
Mat	trix/Level:	_AQUEOUS/MEDIUI	VI	
	<u> </u>			
DATE	LAB FILE ID#	ANALYTE	CRITERIA OUT RFs, %RSD, %D, r	SAMPLES AFFECTED
	nitial and conti			
	muai and conti	nuing calibration me	et method specific requ	uirements

Criteria- ICAL

- Five point calibration curve.
- The percent relative standard deviation (%RSD) of the calibration factor must be equal to or less than 25% over the working range for the analyte of interest.
 When this condition is met, linearity through the origin may be assumed, and the average calibration factor is used in lieu of a calibration curve.
- A collective calibration factor must also be established for each hydrocarbon range of interest. Calculate the collective CFs for C9-C18 Aliphatic Hydrocarbons, C19-C36 Aliphatic Hydrocarbons, and C11-C22 Aromatic Hydrocarbons using the FID chromatogram. Tabulate the summation of the peak areas of all components in that fraction against the total concentration injected. The %RSD of the calibration factor must be equal to or less than 25% over the working range for the hydrocarbon range of interest.
 - o The area for the surrogates must be subtracted from the area summation of the range in which they elute.
 - The areas associated with naphthalene and 2-methylnaphthalene in the aliphatic range standard must be subtracted from the uncorrected collective C9-C18 Aliphatic Hydrocarbon range area prior to calculating the CF.

Criteria- CCAL

 At a minimum, the working calibration factor must be verified on each working day, after every 20 samples or every 24 hours (whichever is more frequent), and

- at the end of the analytical sequence by the injection of a mid-level continuing calibration standard to verify instrument performance and linearity.
- If the percent difference (%D) for any analyte varies from the predicted response by more than ±25%, a new five-point calibration must be performed for that analyte. Greater percent differences are permissible for n-nonane. If the %D for n-nonane is greater than 30, note the nonconformance in the case narrative. It should be noted that the %Ds are calculated when CFs are used for the initial calibration and percent drifts are calculated when calibration curves using linear regression are used for the initial calibration.

Actions:

If %RSD > 25% for target compounds or a correlation coefficient < 0.99, estimate positive results (J) and use professional judgment to qualify nondetects. If % D > 25% (> 30 for nonane), estimate positive results (J) and nondetects (UJ).

CALIBRATIONS VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:02/04/16_	
Dates of continuing calibration verification:	05/02/16;_05/16/16
Dates of final calibration verification:	05/02/16;_05/16/16
Instrument ID numbers:GCDE	
Matrix/Level:_SOIL/AQUEOUS/MEDIUM	

DATE	LAB FILE	ANALYTE	CRITERIA OUT	SAMPLES		
	ID#		RFs, %RSD, %D, r	AFFECTED		
Initial and continuing calibration meet method specific requirements						
		,				

A separate worksheet should be filled for each initial curve

			Criteria were not	met and/or see belowX	
VA. BLA	NK ANALYSIS R	ESULTS (Se	ctions 1 & 2)		
magnitude of blanks assort problems we evaluated to case, or if the Method Bla	of contamination ociated with the solid with the solid and blanks of determine whether the problem is an	problems. The camples, inclusives, all data there or not the isolated occurrence after samples.	ne criteria for evaluding trip, equipm a associated with ere is an inheren currence not affects as suspected of	letermine the existence is luation of blanks apply only nent, and laboratory blanks in the case must be caref t variability in the data for cting other data. A Laborat being highly contaminated	y to s. If fully the tory
List the con separately.	tamination in the	blanks below	w. High and low	levels blanks must be trea	ited
Laboratory b	oianks				
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS	
METHOD	BLANKS MEET	THE METHO	DD SPECIFIC CR	ITERIA	
			30 31		=
Field/Trip/Ed	quipment				
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS	
	FIELD/EQUIPME CKAGE			SSOCIATED_WITH_THIS_	
					_

All criteria were met _	_X
Criteria were not met and/or see below	

V B. BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. Peaks must not be detected above the Reporting Limit within the retention time window of any analyte of interest. The hydrocarbon ranges must not be detected at a concentration greater than 10% of the most stringent MCP cleanup standard. Specific actions area as follows:

If the concentration is < sample quantitation limit (SQL) and < AL, report the compound as not detected (U) at the SQL.

If the concentration is \geq SQL but < AL, report the compound as not detected (U) at the reported concentration.

If the concentration is > AL, report the concentration unqualified.

SAMPLE ID

All criteria were met _	_X
Criteria were not met and/or see below	

ACTION

SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery. Matrix: solid/aqueous

SURROGATE COMPOUND

	001111	AUTION			
	S1	S2	S3	S4	
_SURROGATE	_STANDA	RDS_RECOVER	RIES_WITH	IIN_LABORAT	ORY_CONTROL
S1 = o-Terphen				uorobiphenyl	
	(Aqueous 40_to_14			romonaphthale .14040_to_	
QC Limits* (Soli	id) to	to	to	to	_

It is recommended that surrogate standard recoveries be monitored and documented on a continuing basis. At a minimum, when surrogate recovery from a sample, blank, or QC sample is less than 40% or more than 140%, check calculations to locate possible errors, check the fortifying standard solution for degradation, and check changes in instrument performance.

If the cause cannot be determined, reanalyze the sample unless one of the following exceptions applies:

- (1) Obvious interference is present on the chromatogram (e.g., unresolved complex mixture):
- (2) The surrogate exhibits high recovery and associated target analytes or hydrocarbon ranges are not detected in sample.

If a sample with a surrogate recovery outside of the acceptable range is not reanalyzed based on any of these aforementioned exceptions, this information must be noted on the data report form and discussed in the Executive Report. Analysis of the sample on dilution may diminish matrix-related surrogate recovery problems. This approach can be used as long as the reporting limits to evaluate applicable MCP standards can still be achieved with the dilution. If not, reanalysis without dilution must be performed.

All criteria were met _	_X
Criteria were not met and/or see below	

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples.

At the request of the data user, and in consideration of sample matrices and data quality objectives, matrix spikes and matrix duplicates may be analyzed with every batch of 20 samples or less per matrix.

- Matrix duplicate Matrix duplicates are prepared by analyzing one sample in duplicate. The purpose of the matrix duplicates is to determine the homogeneity of the sample matrix as well as analytical precision. The RPD of detected results in the matrix duplicate samples must not exceed 50 when the results are greater than 5x the reporting limit.
- The desired spiking level is 50% of the highest calibration standard. However, the total concentration in the MS (including the MS and native concentration in the unspiked sample) should not exceed 75% of the highest calibration standard in order for a proper evaluation to be performed. The purpose of the matrix spike is to determine whether the sample matrix contributes bias to the analytical results. The corrected concentrations of each analyte within the matrix spiking solution must be within 40 140% of the true value. Lower recoveries of n-nonane are permissible but must be noted in the narrative if <30%.</p>

MS/MSD Recov	eries and Precision Criter	ia			
Sample ID:_MC	45611-2A_MS/MSD		Matrix	/Level:Grou	ndwater
List the %Rs, R	D of the compounds whi	ch do not	meet t	he QC criteria.	
MS OR MSD	COMPOUND	% R	RPD	QC LIMITS	ACTION
1325					
	- 2 %				
200					
				- 11 291	

Note: MS/MSD % recoveries and RPD within laboratory control limits. No MS/MSD associated with soil matrix included in the data package. Blank spike/blank spike duplicate used to assess accuracy. BS/BSD % recoveries and RPD within laboratory control limits except for the cases described in this document.

All criteria were m	etX
Criteria were not met and/or see be	low

No action is taken on MS/MSD results alone to qualify the entire case. However, used informed professional judgment, the data reviewer may use the MS/MSD results in conjunction with other QC criteria and determine the need for some qualification of the data. In those instances where it can be determined that the results of the MS/MSD affect only the sample spiked, the qualification should be limited to this sample alone. However, it may be determined through the MS/MSD results that the laboratory is having a systematic problem in the analysis of one or more analytes, which affects the associated samples.

2. MS/MSD – Unspiked Compounds

List the concentrations of the unspiked compounds and determine the % RSDs of these compounds in the unspiked sample, matrix spike, and matrix spike duplicate.

	CONCENTR	ATION			
COMPOUND	SAMPLE	MS	MSD	%RPD	ACTION
		-			
	10.0				
		1975			
	*****				545.000,000

Criteria: None specified, use %RSD ≤ 50 as professional judgment.

Actions:

If the % RSD > 50, qualify the results in the spiked sample as estimate (J). If the % RSD is not calculable (NC) due to nondetect value in the sample, MS, and/or MSD, use professional judgment to qualify sample data.

A separate worksheet should be used for each MS/MSD pair.

			Criteria		and/or see below			
	VIII.	LABORATORY CON	NTROL SAMPL	.E (LCS/LCSD) ANALYSIS			
This data is generated to determine accuracy of the analytical method for variantices.								
	1.	LCS Recoveries Crit List the %R of comp		o not meet the	criteria			
LCS II)	COMPOUND	% R	QC LIMIT	ACTION			
LCS	S_RECO	OVERY_WITHIN_LAE	BORATORY_C	ONTROL_LIM	TS			
	Criteria * *	Refer to QAPP for sport of the spike recovery representation on the spike recovery representation on the spike recovery representation on the spike recovery representation of the spike recovery reco	nust be betweensible. If the re	covery of n-no	onane is <30%, no	ote the		
	Action	s:						
	Actions on LCS recovery should be based on both the number of compounds that are outside the %R and RPD criteria and the magnitude of the excedance of the criteria.							
the as If the for the If more qualify	sociated %R of to affected than h	he analyte is > UL, que is samples and accept he analyte is < LL, que dependent in the associal of the compounds in itive results as (J) an imples.	nondetects. ualify all positive intention in the control of the c	ve results (j) a ot within the re	nd reject (R) nonc	detects		
2.	Freque	ency Criteria:						
Where LCS analyzed at the required frequency and for each maper matrix)? Yes or No. If no, the data may be affected. Use professional judgment to de the effect and qualify data accordingly. Discuss any actions below:					determine the seve	erity of		
	27 171.1							

		I	Criteria we	All crite ere not met and		e metX_ below	
IX. FIE	ELD/LABORATORY	DUPLICATE	PRECISION	ON			
Sample ID)s:			_	fatrix:		
Field/labor	ratory duplicates sa	moles mav	be taken	and analyzed	as an	indication	٥

Field/laboratory duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which measures only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION
No field/laborator	y duplicate PD used to	analyzed with thi	s data package. MS/	MSD rec	coveries and
		acceptable cor			

Criteria:

The project QAPP should be reviewed for project-specific information. RPD \pm 30% for aqueous samples, RPD \pm 50 % for solid samples if results are \geq SQL. If both samples and duplicate are \leq SQL, the RPD criteria is doubled.

SQL = soil quantitation limit

Actions:

If both the sample and the duplicate results are nondetects (ND), the RPD is not calculable (NC). No action is needed.

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria.

If one sample result is not detected and the other is $\geq 5x$ the SQL qualify (J/UJ).

Note: If SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is < 5x the SQL, use professional judgment to determine if qualification is appropriate.

All criteria were met _	_X
Criteria were not met and/or see below	

XI. COMPOUND IDENTIFICATION

The compound identification evaluation is to verify that the laboratory correctly identified target analytes as well as tentatively identified compounds (TiCs).

- 1. Verify that the target analytes were within the retention time windows.
 - Retention time windows must be re-established for each Target EPH Analyte each time a new GC column is installed, and must be verified and/or adjusted on a daily basis.
 - o The n-nonane (n-C9) peak must be adequately resolved from the solvent front of the chromatographic run.
 - o All surrogates must be adequately resolved from the Aliphatic Hydrocarbon and Aromatic Hydrocarbon standards.
 - For the purposes of this method, adequate resolution is assumed to be achieved if the height of the valley between two peaks is less than 25% of the average height of the two peaks.
 - The n-pentane (C5) and MtBE peaks must be adequately resolved from any solvent front that may be present on the FID and PID chromatograms, respectively.
- 1a. Aliphatic hydrocarbons range:
 - o Determine the total area count for all peaks eluting 0.1 minutes before the retention time (Rt) for n-C9 and 0.01 minutes before the Rt for n-C19.
 - Determine the total area count for all peaks eluting 0.01 minutes before the Rt for n-C19 and 0.1 minutes after the Rt for n-C36.

Are the aliphatic hydrocarbons range properly determined?

Yes? or No?

Comments:

- 1b. Aromatic hydrocarbons range:
 - Determine the total area count for all peaks eluting 0.1 minutes before the retention time (Rt) for naphthalene and 0.1 minutes after the Rt for benzo(g,h,i)perylene.
 - Determine the peak area count for the sample surrogate (OTP) and fractionation surrogate(s). Subtract these values from the collective area count value.

Are the aliphatic hydrocarbons range properly determined?

Yes? or No?

Comments:

				All criteria w	ere met	X
		C	riteria were not			
2.	If target analytes a laboratory resubmit t			identified, r	equest tha	t the
3.	Breakthrough detent evaluated for potenti % recovery of the fr basis by quantifying and aromatic fraction naphthalene or 2-m the total concentra or LCSD, fractional	al breakthrough actionation surro naphthalene ar ns of the LCS ethylnaphthale tion for naphthion must be rep	on a sample spogate (2-bromond 2-methylnaphand LCSD. If each in the aliphalene or 2-metheated on all and	ecific basis to aphthalene) of thalene in besther the coatic fraction hylnaphthal ochived batc	oy evaluating and on a too the the alipponcentration exceeds 5 ene in the h extracts.	g the patch hation of the control of
	NOTE:	methylnaphth summation	concentration alene in the Loof the conce ion and the conceion.	CS/LCSD pa ntration de	ir includes tected in	the
	Comments:Conce _concentration_for_r					
						_
4.	Fractionation Checontaining 14 alkane each constituent. The fractionation efficient optimum hexane volument allowing signific contained in the fractionane.	es and 17 PAHs e Fractionation (cy of each new ume required to ant aromatic hy ctionation check	at a nominal of theck Solution of lot of silica gel/ efficiently elute drocarbon breat solution, exclu	concentration must be used cartridges, a aliphatic hyd akthrough. Fa ading n-nona	of 200 ng/d to evaluate nd establish trocarbons or each an ne, the Pe	/µl or e the h the while alyte rcen
	Is a fractionation che	ck standard ana	lyzed?		Yes? or N	0?
	Comments: Not appl	icable.				

All criteria were met _	X
Criteria were not met and/or see below	

XII. QUANTITATION LIMITS AND SAMPLE RESULTS

The sample quantitation evaluation is to verify laboratory quantitation results.

In order to demonstrate the absence of aliphatic mass discrimination, the response ratio of C28 to C20 must be at least 0.85. If <0.85, this nonconformance must be noted in the laboratory case narrative.

The chromatograms of Continuing Calibration Standards for aromatics must be reviewed to ensure that there are no obvious signs of mass discrimination.

Is aliphatic mass discrimination observed in the sample?

Yes? or No?

Is aromatic mass discrimination observed in the sample?

Yes? or No?

1. In the space below, please show a minimum of one sample calculation:

MC45611-3MS

EPH (C11 – C22, Aromatics)

RF = 98200

[] = (40364147)/(98200)

[] = 411.0 ppb Ok

MC45611-3MS

EPH (C19 – C36, Aliphatics)

RF = 66810

[]=(13690971)/(66810)

[] = 204.9 ppb Ok

- 2. If requested, verify that the results were above the laboratory method detection limit (MDLs).
- 3. If dilutions performed, were the SQLs elevated accordingly by the laboratory? List the affected samples and dilution factor in the table below.

SAMPLE ID	DILUTION FACTOR	REASON FOR DILUTION			

If dilution was not performed,	estimate	results	(J)	for the	e affected	compounds.	List	the
affected samples/compounds:						-		
•								
	1000							